3.1 Exploring Polynomial Functions

A Polynomial Functions	Ex 1. Verify if the following expressions are or not polynomial functions.				
A polynomial function $y = f(x)$ is defined by:					
$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$	a) $f(x) = \sqrt{2x^3 - 2x^2}$				
 where: a_n, a_{n-1},,a₂, a₁, a₀ are <i>real numbers</i> called the <i>coefficients</i> of the polynomial function 	b) $f(x) = 2\sqrt{x} - x^2$				
 <i>a_n</i> is called <i>leading coefficient</i> 	c) $f(x) = x^2 + \frac{1}{x^2}$				
• $a_n x^n$ is called <i>leading term</i>	x				
 <i>a</i>₀ is called the <i>constant term</i> 					
 n is a non-negative integer that gives the degree of the polynomial function 	d) $f(x) = (x-1)(x+2)^2$				
Note. The degree of the polynomial function n is the largest exponent of x					
B Order	Ex 2. Consider $f(x) = x - 2x^3 - 4x^2 + 3 - x^4$				
The terms of a polynomial function can be written in any order because the addition operation is a commutative operation.	 a) Is this function polynomial? If yes, find the degree, the leading term, the leading coefficient, and the constant term 				
	 b) write the polynomial function in order of increasing powers of the variable <i>x</i> c) write the polynomial function in order of decreasing powers of the variable <i>x</i> 				
C Specific Polynomials	Ex 3. Identify each polynomial function as constant,				
If $n = 0$, $f(x) = a_0$ is called <i>constant</i> function.	inicar, quadrano, cubic, quarno, or quinno.				
If $n=1$, $f(x) = a_1x + a_0$ is called <i>linear</i> function.	a) $f(x) = -2$				
If $n=2$, $f(x) = a_2x^2 + a_1x + a_0$ is called <i>quadratic</i> function.	b) $f(x) = -x^2 + 3$				
If $n=3$, $f(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ is called <i>cubic</i> function.	c) $f(x) = 2x^3 - 3x^2 + x$				
Note. For $n = 4$ we have the <i>quartic</i> function and for $n = 5$ we have the <i>quintic</i> function.	d) $f(x) = 2 - 3x$				
	e) $f(x) = x^{3} + x^{3}$				
	f) $f(x) = 1 - x^2 - x^4 + x$				

D Operations with polynomial functions	Ex 4. Consider two polynomial functions $f(x) = 6x - 3x^2$ and $g(x) = x - 2$. Do the required								
All the four operations (addition, subtraction, multiplication, and division) are defined for polynomial	operatio	operations:							
functions.	a) $f(x) + g(x)$								
	b) $f(x) - g(x)$								
	c) $f(x)g(x)$								
	d) $f(x)$	/ g(x)							
E y-intercept	Ex 5. Find the y-intercept for each polynomial function.								
The y-intercept of a polynomial function is equal with		a) $f(x) = -2$							
the constant term $y - int = f(0) = a_0$	b) $f(x) = -x^2 + 3$								
	c) $f(x)$	$=2x^{3}-3$	$x^2 + x$						
	d) $f(x) = (x^2 + 1)(x - 2)$ e) $f(x) = (x^3 - 2)^3$								
	$f(x) = -2(x+3)^2(x-1)^3$								
F Finite Differences	Ex 6. Use the information provided bellow and the finite								
The <i>nth</i> finite differences of a polynomial function of degree n are constant.	function and the <i>leading coefficient</i> .								
This constant c is related to a_n and n by:	<i>x</i>	У	$\Delta^1 y$	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$		
$c = n! a_n$	-4	-476							
where ut (a factorial) is defined by	-3	-134							
	-2	-10							
$n!=1\times2\times3\times\ldots\times(n-1)\times n$	-1	16							
Note: Use "following # minus preceding #" rule to find	0	16							
	1	14							
a $b-a$	2	-14							
b	3	-140							
c-b	4	-484							
С									

Reading: Nelson Textbook, Pages 124-126 **Homework**: Nelson Textbook, Page 127: #1, 2, 5