### 3.1 Exploring Polynomial Functions

## A Polynomial Functions

A polynomial function $y=f(x)$ is defined by:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where:

- $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0}$ are real numbers called the coefficients of the polynomial function
- $a_{n}$ is called leading coefficient
- $a_{n} x^{n}$ is called leading term
- $a_{0}$ is called the constant term
- $n$ is a non-negative integer that gives the degree of the polynomial function

Note. The degree of the polynomial function $n$ is the largest exponent of $x$

## B Order

The terms of a polynomial function can be written in any order because the addition operation is a commutative operation.

Ex 1. Verify if the following expressions are or not polynomial functions.
a) $f(x)=\sqrt{2} x^{3}-2 x^{2}$
b) $f(x)=2 \sqrt{x}-x^{2}$
c) $f(x)=x^{2}+\frac{1}{x}$
d) $f(x)=(x-1)(x+2)^{2}$

Ex 2. Consider $f(x)=x-2 x^{3}-4 x^{2}+3-x^{4}$
a) Is this function polynomial? If yes, find the degree, the leading term, the leading coefficient, and the constant term
b) write the polynomial function in order of increasing powers of the variable $x$
c) write the polynomial function in order of decreasing powers of the variable $x$

## C Specific Polynomials

If $n=0, f(x)=a_{0}$ is called constant function.
If $n=1, f(x)=a_{1} x+a_{0}$ is called linear function.
If $n=2, f(x)=a_{2} x^{2}+a_{1} x+a_{0}$ is called quadratic function.
If $n=3, f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ is called cubic function.

Note. For $n=4$ we have the quartic function and for $n=5$ we have the quintic function.

Ex 3. Identify each polynomial function as constant, linear, quadratic, cubic, quartic, or quintic.
a) $f(x)=-2$
b) $f(x)=-x^{2}+3$
c) $f(x)=2 x^{3}-3 x^{2}+x$
d) $f(x)=2-3 x$
e) $f(x)=x^{5}+x^{3}$
f) $f(x)=1-x^{2}-x^{4}+x$

## D Operations with polynomial functions

All the four operations (addition, subtraction, multiplication, and division) are defined for polynomial functions.

Ex 4. Consider two polynomial functions
$f(x)=6 x-3 x^{2}$ and $g(x)=x-2$. Do the required operations:
a) $f(x)+g(x)$
b) $f(x)-g(x)$
C) $f(x) g(x)$
d) $f(x) / g(x)$

Ex 5. Find the y-intercept for each polynomial function.
a) $f(x)=-2$
b) $f(x)=-x^{2}+3$
c) $f(x)=2 x^{3}-3 x^{2}+x$
d) $f(x)=\left(x^{2}+1\right)(x-2)$
e) $f(x)=\left(x^{3}-2\right)^{3}$
f) $f(x)=-2(x+3)^{2}(x-1)^{5}$

## F Finite Differences

The $n$th finite differences of a polynomial function of degree $n$ are constant.
This constant $c$ is related to $a_{n}$ and $n$ by:

$$
c=n!a_{n}
$$

where $n!(n$ factorial) is defined by

$$
n!=1 \times 2 \times 3 \times \ldots \times(n-1) \times n
$$

Note: Use "following \# minus preceding \#" rule to find the differences:
$a$

$$
b-a
$$

b

$$
c-b
$$

c

Reading: Nelson Textbook, Pages 124-126
Homework: Nelson Textbook, Page 127: \#1, 2, 5

